Efficient and realistic device modeling from atomic detail to the nanoscale
نویسندگان
چکیده
As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.
منابع مشابه
The role of molecular modeling in bionanotechnology.
Molecular modeling is advocated here as a key methodology for research and development in bionanotechnology. Molecular modeling provides nanoscale images at atomic and even electronic resolution, predicts the nanoscale interaction of unfamiliar combinations of biological and inorganic materials, and evaluates strategies for redesigning biopolymers for nanotechnological uses. The methodology is ...
متن کاملConductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs
Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...
متن کاملThree-dimensional design and replication of silicon oxide nanostructures using an atomic force microscope
Atomic force microscope (AFM) based local anodic oxidation of metallic and semiconducting layers has emerged as a powerful tool for nanoscale fabrication. A unique nanoscale patterning technique has been created that couples computer aided design (CAD) with the lithographic capabilities of the AFM. Target nanostructures to be deposited on a silicon substrate are rendered as a three-dimensional ...
متن کاملAtomic Scale Design and Three-Dimensional Simulation of Ionic Diffusive Nanofluidic Channels
Recent advance in nanotechnology has led to rapid advances in nanofluidics, which has been established as areliable means for a wide variety of applications, including molecular separation, detection, crystallization andbiosynthesis. Although atomic and molecular level consideration is a key ingredient in experimental design andfabrication of nanfluidic systems, atomic and molecular...
متن کاملEffects of the Channel Length on the Nanoscale Field Effect Diode Performance
Field Effect Diode (FED)s are interesting device in providing the higherON-state current and lower OFF–state current in comparison with SOI-MOSFETstructures with similar dimensions. The impact of channel length and band-to-bandtunneling (BTBT) on the OFF-state current of the side contacted FED (S-FED) has beeninvestigated in this paper. To find the lowest effective channel length, this device i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013